Finite - dimensional non - commutative Poisson algebras ]

نویسنده

  • Fujio Kubo
چکیده

Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. For finite-dimensional ones we show that if they are semisimple as associative algebras then they are standard, on the other hand, if they are semisimple as Lie algebras then their associative products are trivial. We also give the descriptions of the structures of finite-dimensional non-commutative Poisson algebras whose Lie structures are reductive. 1991 Math. Subj. Class.: 17B60, 16W25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative Poisson algebra structures on affine Kac-Moody algebras

Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie structure together with the Leibniz law. The non-commutative Poisson algebra structures on the infinite-dimensional algebras are studied. We show that these structures are standard on the poset subalgebras of the associative algebra of all endomorphisms of the countable-dimensional vector space T...

متن کامل

Polarized Associative Algebras1

Poisson superpair is a pair of Poisson superalgebra structures on a super commutative associative algebra, whose any linear combination is also a Poisson superalgebra structure. In this paper, we first construct certain linear and quadratic Poisson superpairs over a finite-dimensional or semi-finitely-filtered polarized Z2-graded associative algebra. Then we give a construction of certain Hamil...

متن کامل

Non-commutative, Non-cocommutative Semisimple Hopf Algebras arise from Finite Abelian Groups

Given any nontrivial alternating tri-character f on a finite abelian group G, one can construct a finite dimensional non-commutative and non-cocommutative semisimple Hopf algebra H. The group of group-like elements of H is an abelian central extension of B by Ĝ where B is the radical of f .

متن کامل

Complete Commutative Subalgebras in Polynomial Poisson Algebras: a Proof of the Mischenko–fomenko Conjecture*

The Mishchenko–Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra g there exists a complete set of commuting polynomials on its dual space g*. In terms of the theory of integrable Hamiltonian systems this means that the dual space g* endowed with the standard Lie–Poisson bracket admits polynomial integrable Hamiltonian systems. This conjecture was proved by S. ...

متن کامل

v 2 8 N ov 1 99 5 QUANTIZATION OF POISSON ALGEBRAIC GROUPS AND POISSON HOMOGENEOUS SPACES

This paper consists of two parts. In the first part we show that any Poisson algebraic group over a field of characteristic zero and any Poisson Lie group admits a local quantization. This answers positively a question of Drinfeld and generalizes the results of [BFGP] and [BP]. In the second part we apply our techniques of quan-tization to obtain some nontrivial examples of quantization of Pois...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003